
Herbaspirillum seropedicae is an endophytic nitrogen-fixing -
Proteobacterium, which associates with agricultural crops such 
as rice, maize, sugarcane, and pineapple (Baldani et al., 1986; 
Young, 1992; Cruz et al., 2001). Nitrogen fixation in this 
bacterium and other diazotrophs is highly regulated, requiring 
the activity of several gene products to produce an active 
nitrogenase complex (Pedrosa et al., 2001).  

Nitrogen fixation is a process which requires a high energy 
input, a characteristic clearly manifested by the need for low-
potential reductants that can donate electrons to the Fe-
protein. However, the pathway for electron transfer from 
metabolic intermediates to nitrogenase has been characterized 
in biochemical and genetic detail in only a few organisms. It 
has been proposed that the direct electron donors to 
nitrogenase are flavodoxins or ferredoxins. Yates (1972) 
showed that flavodoxin hydroquinone acted as a reductant in 

vitro for nitrogenase from Azotobacter chroococcum, and in 
the facultative anaerobe Klebsiella pneumoniae, the electron 
transfer pathway involves the nifJ and nifF gene products, a 
pyruvate:flavodoxin oxidoreductase and a flavodoxin, respectively 
(Shah et al., 1983; Deistung et al., 1985; Deistung and Thorneley, 
1986).

Ferredoxins have been shown to be involved in electron 
transfer to nitrogenase in several aerobic diazotrophs, such as 
Bradyrhizobium japonicum, Rhodospirillum rubrum, Azoarcus

sp., and Rhodobacter capsulatus (Jouanneau et al., 1995; 
Egener et al., 2001; Edgren and Nordlund, 2005, 2006; Hauser 
et al., 2007). 

In the purple non-sulfur photosynthetic bacterium R. 

rubrum the electron transport to nitrogenase has been both 
genetically and biochemically investigated and seems to 
operate through two pathways. The products of the fix genes 
constitute the major pathway under heterotrophic conditions, 
whereas a pyruvate:ferredoxin oxidoreductase, encoded by 
nifJ gene, seems to provide the main electron donor under 
darkness and anaerobiosis. In both systems, the ferredoxin N 
(FdxN) is considered responsible for direct electron transfer 
to the Fe-protein (Edgren and Nordlund, 2006).  

Two ferredoxin-like coding genes located in nif operons were 
identified in H. seropedicae and, based on sequence similarity 
to described genes, named fdxA (GenBank accession no. 
EF666057) and fdxN (accession number M60319). The fdxA 

gene is located downstream from the nifHDKENXorf1orf2 

operon and immediately upstream from the nifQmodA1B1C1

genes (Machado et al., 1996; Klassen et al., 1999), while fdxN

is located downstream from the nifB gene (Rego et al., 2006). 
In this work we have analyzed the ferredoxin-coding genes 
fdxA and fdxN. Our results indicated that the fdxN gene 
product is essential for nitrogenase function and an fdxA

mutant showed a significant decrease in nitrogenase activity, 
suggesting these gene products may be involved in electron 
delivery to nitrogenase in H. seropedicae.

Materials and Methods 

Bacterial strains, plasmids, and media conditions 

The genotypes of the bacterial strains, and plasmids used in this study 

are listed in Table 1. Escherichia coli strains were grown at 37oC in LB 

liquid medium or on LB-agar (Sambrook et al., 1989) with appropriate 

antibiotics (streptomycin 80 g/ml, ampicillin 100 g/ml or kanamycin 
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50 g/ml). 

  H. seropedicae strains were grown at 30 C in NFbHP-malate medium 

(Klassen et al., 1997) supplemented with 20 mM ammonium chloride 

or the indicated nitrogen source and appropriate antibiotics (kanamycin 

500 g/ml, streptomycin 80 g/ml or chloramphenicol 100 g/ml). 

Cloning and molecular biology methods 

General techniques for DNA isolation, restriction enzyme analysis, 

cloning procedures and transformations were according to standard 

protocols (Sambrook et al., 1989). Enzymes were obtained from 

commercial sources and used according to the manufacturers’ 

instructions. DNA sequencing was performed using dye-terminators 

(ET terminator, GE Healthcare) in an ABI 377 automated DNA 

sequencer (Applied Biosystems). 

Mutagenesis of fdxA was performed by subcloning a 1.3 kb EcoRI 

fragment from the plasmid HS25-MF-013-D09, containing a region 

spanning from the 3  end of nifX to the 5  end of nifQ of H. seropedicae,

into pSUP202. This plasmid was used to insert the lacZ-Km cassette 

from the plasmid pKOK6.1 into the NsiI site of the fdxA gene and the 

resulting plasmid (pALFSA) was introduced into the H. seropedicae

Table 1. Bacterial strains and plasmids used in this study 

Strain or plasmid Relevant genotype or characteristic Reference 

H. seropedicae 

 SmR1 Z78; Nif+, SmR (wild type) Souza et al. (1999) 

 SmR7.2 SmR1; SmR, KmR, fdxN::, Nif- This work 

 KC6 SmR1, fdxA::lacZ-Km, SmR, KmR This work 

E. coli 

 DH10B SmR Grant et al. (1990) 

Plasmids 

 HS05-MF-037-A04 H. seropedicae nifN(3 )-nifQ(5 ) in pUC18R Genopar consortiuma

 HS25-MF-013-D09 H. seropedicae orf1(5 )-modA1(5 ) in pUC18R Genopar consortiuma

 pKOK6.1 ApR, CmR, KmR, lacZ without promoter Kokotek and Lotz (1989) 

 pUC4K ApR, KmR, cloning vector GE Healthcare 

 pMP220 TcR, lacZ fusion vector Spaink et al. (1987) 

 pSUP202 ApR, CmR, TcR, mob Simon et al. (1983) 

 pLAFR 3.18 pLAFR3 with pTZ18R polylinker, cos lacZ TcR Machado et al. (1996) 

 pMPnifN-Q BamHI-EcoRI nifN-nifQ fragment cloned in vector pMP220  This work 

 pFGMR2 550 bp PstI fragment containing the fdxN gene in pTZ18R, ApR This work 

 pALI7 Km cassette insertion in fdxN gene of the plasmid pFGMR2, ApR, KmR This work 

 pALIC1 550 bp BamHI/HindIII fragment of the plasmid pFGMR2 containing fdxN gene in  
pLAFR 3.18 , TcR

This work 

pALFSA lacZ-Km insertion into fdxA cloned in vector pSUP202 This work 

a H. seropedicae genome sequencing consortium (www.genopar.org)
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Fig. 1. Genetic map of the H. seropedicae nif regions containing the fdxA and fdxN genes. The large arrows indicate the gene position and 
orientation. p Indicates the identified promoters upstream from nifH, nifA, and nifB. The length of the intergenic regions are indicated by the 
dashed lines above the map. Strategies of mutagenesis, including the location and orientation of the inserted Km and lacZ-Km cassettes, are 
indicated. The vertical arrows indicate the NsiI sites used to insert the mutagenic cassettes. Restriction sites: P, PstI; N, NsiI; E, EcoRI; H, 
HindIII; B, BamHI. An asterisk indicates a restriction site from the vector polylinker. 
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SmR1 strain by electroporation, as described (Rego et al., 2006) (Fig. 1). 

A H. seropedicae fdxA mutant was selected by kanamycin resistance 

and was named KC6. Southern blot analysis confirmed the presence 

of the cassette and disruption of the fdxA gene. 

To construct a plasmid with the Km cassette insertion into the fdxN

gene, the Km cassette obtained from pUC4K was inserted into the 

NsiI site of pFGMR2 resulting in the plasmid pALI7 (Fig. 1). This 

plasmid was also transformed into the SmR1 strain by electroporation 

(Rego et al., 2006) and the mutant was selected by kanamycin 

resistance. DNA hybridization using genomic DNA was used to 

confirm the presence of the cassette in the fdxN gene. 

To construct a H. seropedicae-stable plasmid containing the fdxN

gene for genetic complementation, the plasmid pFGMR2 was 

digested with BamHI and HindIII and the 550 bp fragment containing 

fdxN was cloned into pLAFR 3.18 (Machado et al., 1996) resulting in 

plasmid pALIC1 (Fig. 1). 

To generate a nifN-nifQ:lacZ gene fusion the plasmid HS05-MF-

037-A04 was digested with BamHI and EcoRI to produce a 1.6 kb 

fragment containing a region spanning the 3  of nifN to the 5  of nifQ

(Fig. 1). This fragment was then ligated to the vector pMP220 also 

digested with BamHI and EcoRI giving plasmid pMPnifN-Q. 

Nitrogenase and -galactosidase assays 

For nitrogenase assays, cells were grown at 30oC in semi-solid 

NFbHP-malate (1.75 g/L agar) medium containing 0.5 mM glutamate 

at atmospheric pressure (Klassen et al., 1999) and acetylene reduction 

activity was measured by gas chromatography (Dilworth, 1966; 

Schollhorn and Burris, 1967). Briefly, the flasks containing grown 

cultures were sealed with a subaseal and acetylene was added to a 

final concentration of 10% (v/v) of the gas phase. The cultures were 

incubated at 30°C without agitation. After one hour, samples (0.5 ml) 

were removed for analysis with a gas chromatograph (Varian model 

3400 equipped with a Porapak N column and flame ionization 

detector) to determine the amount of ethylene produced. Nitrogen 

was the carrier (20 ml/min) and the temperatures of the column and 

detector were 120°C and 200°C, respectively. Nitrogenase activity is 

reported as nmol of C2H4 produced per minute per mg protein. 

-Galactosidase activity was assayed as described by Miller (1992). 

Aliquots (0.1 ml) of the cultures were removed and mixed with 0.9 ml 

of buffer Z (60 mmol/L Na2HPO4 7H2O, 40 mmol/L NaH2PO4 H2O, 

10 mmol/L KCl, 1 mmol/L MgSO4.7H2O, 50 mmol/L -mercaptoetanol, 

0.0027% SDS, pH 7.0). After incubation (30°C for 5 min) o-

nitrophenyl- -D-galactoside (4 mg/ml) was added and incubated at 

30oC. The stop solution (Na2CO3 1 mol/L) was then added and the 

absorbance of o-nitrophenol (ONP) was measured at 420 nm. The 

results are reported as nmol of ONP produced per minute per mg 

protein. Protein was determined as described by Bradford (1976) 

using bovine serum albumin (BSA) as the standard. 

Results and Discussion 

Identification of the fdxA and fdxN genes of H. seropedicae 
In this work we have identified two ferredoxin-like coding 
genes associated with the nif cluster of H. seropedicae. These 
genes have been named fdxA (GenBank accession no. EF666057) 
and fdxN (accession number M60319) based on their similarity 
to known genes. 

The H. seropedicae fdxA gene is located downstream from 
the nifHDKENXorf1orf2 operon and immediately upstream
from the nifQmodA1B1C1 genes (Klassen et al., 1999) (Fig. 1). 
The fdxN gene is located downstream from nifB and upstream 
from a hesB-like gene (Rego et al., 2006) (Fig. 1). Analysis 
using the String program (von Mering et al., 2007) showed 
that the genomic neighborhood of fdxA and fdxN is conserved 
in several diazotrophs such as R. rubrum (Edgren and 
Nordlund, 2005) and B. japonicum (Gottfert et al., 2001), 
suggesting a functional relationship between the proteins 
coded by these genes (Fig. 2). 

The fdxA gene codes for a 101 amino acid protein with two 
typical cysteine clusters (Cys-X2-Cys-X2-Cys-X3-Cys) 41 amino 
acids apart. It has been suggested that these clusters are 
involved in the coordination of two [4Fe-4S] iron centers 
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(Bruschi and Guerlesquin, 1988). Analysis indicated 64% 
identity (81% similarity) to a 4Fe-4S ferredoxin from 
Burkholderia vietnamiensis G4 (ABO58950) (Menard et al.,
2007), 56% identity (72% similarity) to FdxA from Azospirillum 

brasilense (AAK51501) (Potrich et al., 2001), 55% identity 
(73% similarity) to Fer3 from B. japonicum (AAG60736) 
(Gottfert et al., 2001) and 50% identity (75% similarity) to 
FdIII (FdxA) from R. capsulatus (M26323) (Moreno-Vivian et

al., 1989). In all these organisms the ferredoxin-coding gene is 
in the cluster nifENXorf1orf2fdxAnifQ (Moreno-Vivian et al.,
1989; Klassen et al., 1999; Gottfert et al., 2001; Potrich et al., 
2001; Menard et al., 2007). 

The H. seropedicae fdxN gene (accession number M60319) 
codes for a 72 amino acid protein with two cysteine clusters: 
the first one has a typical Cys-X2-Cys-X2-Cys-X3-Cys motif, 
while the second one has the motif Cys-X2-Cys-X8-Cys-X3-Cys. 
It has 86% identity (93% similarity) to FdxN from Rhodopseu-

domonas palustris (GenBank accession no. NP 949963) 
(Larimer et al., 2004), 73% identity (81% similarity) to FrxA 
from B. japonicum (accession number P27394) (Ebeling et al.,
1988), 66% identity (75% similarity) to FdxN from B.

japonicum (accession AAG60725) (Gottfert et al., 2001), 54% 
identity (61% similarity) to FdxN2 from R. rubrum (accession 
NC 007643.1) (Edgren and Nordlund, 2005), and 53% identity 
(63% similarity) to FdxN from Azoarcus sp. (accession 
AF200742) (Egener et al., 2001). These genes are located 
downstream from nifB except in Azoarcus sp. (Egener et al., 
2001) where it is located downstream from nifHDK. In B.

japonicum, two homologues of fdxN were found, the frxA gene 
is located downstream from nifB (Fig. 2), and the fdxN gene is 
located upstream from the nifDK cluster and downstream 
from aldA (aldehyde dehydrogenase) (Gottfert et al., 2001). 

Transcriptional analysis of the H. seropedicae fdxA gene  
In H. seropedicae, the nifHDKENXorf1orf2 genes are transcribed 
from a -24/-12 type promoter located upstream from nifH

(Machado et al., 1996; Klassen et al., 1999). In silico analysis 
revealed neither a typical 54-dependent promoter sequence 
nor a DNA-binding sequence for the NifA protein in the 
region upstream from fdxA and downstream from nifH.
Inspection of the whole region fdxAnifQmodA1B1C1 did not 
reveal any sequence similar to a nif promoter or putative NifA 
binding site. Furthermore, the intergenic regions are very 
short and no putative terminator sequences were identified. 
Earlier, Klassen et al. (1999) showed the absence of an active 
promoter between the nifK and nifE genes. In order to verify 
if no cryptic promoter was present upstream from fdxA, the 
region including the 3  of nifN to the 5 end of nifQ was  
cloned into a lacZ fusion vector (Table 2). When this fusion 
was introduced in the wild type strain of H. seropedicae,   
only background activity was observed under all conditions 
tested, confirming the absence of a promoter in that region. 
Moreover, a fragment containing the region between orf1

and modA1 was also subcloned into pMP220 producing an 
orf1-modA1::lacZ fusion (data not shown) which failed to 
drive -galactosidase expression under nitrogen fixation 
conditions. Together, the results suggest that the gene cluster 
nifHDKENXorf1orf2fdxAnifQmodA1B1C1 of H. seropedicae 

forms a single operon under control of the nifH promoter.  
To confirm that the pattern of fdxA expression follows that 

of a nif gene, a mutant strain (KC6) of H. seropedicae carrying 
a lacZ reporter gene inserted into fdxA in its transcription 
orientation was constructed. The -galactosidase activity of 
this strain in the presence or absence of oxygen and 
ammonium is shown in Table 2. The results show that fdxA is 
expressed only under nitrogen-fixing conditions (low oxygen 
and ammonium), suggesting that this gene is under control of 
a nif promoter. Together the results suggest that fdxA is 
expressed from a nif promoter located upstream from nifH, 

since no other promoter sequence was found upstream from 
fdxA and the -galactosidase activity expression pattern of the 
mutant strain KC6 is comparable to that of a nifH::lacZ

mutant strain (Machado et al., 1996).  
The H. seropedicae fdxN gene is located in another nif

operon in which nifB is the first gene. Sequence analysis did 
not reveal a nif-type promoter or NifA-binding site in the 
nifB-fdxN (37 bp) or fdxN-hesB (13 bp) intergenic regions of H.

seropedicae (Fig. 1). As previously shown by Rego et al. (2006), 
the nifB of H. seropedicae is expressed by a NifA-/RpoN-
dependent promoter under low nitrogen and oxygen conditions 
(Table 2). Together, the sequence analysis and expression 
from the nifB promoter suggest that the fdxN gene is 
expressed under nitrogen fixation conditions from the 
promoter located upstream from nifB (Rego et al., 2006).  

Mutation and phenotypic analysis of the ferredoxin 
genes of H. seropedicae 
To determine the role of FdxA on nitrogen fixation in H.

seropedicae, a mutant was obtained by inserting a lacZ-Km 
cassette into the fdxA gene, in the same orientation as the 
gene, yielding strain KC6.  

The fdxA mutant strain KC6 had nitrogenase activity 70% 
lower than that of the wild-type (Fig. 3), indicating that 
ferredoxin FdxA does play an important role in the nitrogen-
fixing process. Previously, Klassen et al. (1997) showed that a 
nifQ mutant had nitrogenase activity comparable to that of the  

Table 2. Expression analysis of the nifX-nifQ region and the fdxA::lacZ

mutant strain of H. seropedicae. -Galactosidase activity was 
determined in H. seropedicae SmR1 strain carrying the indicated 
plasmids and in the mutant strain KC6. +N or -N indicates the 
presence or absence of 20 mM NH4Cl, respectively; +O indicates 
~20% O2; –O indicates ~1.5% O2. Data are the Mean±SD of at least 
3 independent assays

Strain (Plasmid) Conditions 
-Galactosidase activity 

(nmol ONP/mg protein/min)

SmR1(pEMS140) 
nifB::lacZ 

+N/+O 

+N/–O 

–N/+O 

–N/–O 

3.6±1.2 

7.9±5.6 

6.6±1.3 

815.6±54.3  

SmR1(pMPnifN-Q)
nifN-Q::lacZ

+N/+O 

+N/–O 

–N/+O 

–N/–O 

6.4±0.6 

7.1±5.0 

0.3±0.1 

12.1±1.2  

KC6 
fdxA::lacZ

+N/+O 

+N/–O 

–N/+O 

–N/–O 

7.9±3.2 

28.2±14.1 

12.6±7.6  

525.8±19.5  
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Fig. 3. Relative nitrogenase activities of the H. seropedicae wild type 

(SmR1), fdxA mutant (KC6), fdxN mutant (SmR7.2), and fdxN mutant 

carrying plasmid pALIC1. Full nitrogenase activity (100%) was 

approximately 8 nmol of ethylene/min/mg of protein for the wild type 

strain SmR1. Results are the Mean SD of at least three experiments. 

wild type strain under normal molybdenum concentration 
(7.2 M). These results suggest that the reduction in nitrogenase 
activity observed in strain KC6 is probably due to defective 
electron transport to the nitrogenase and not to a polar effect 
on the genes upstream from fdxA.

Strain SmR7.2 contains the insertion of a kanamycin 
resistance cassette into the fdxN gene. This mutant strain was 
unable to reduce acetylene (Fig. 3), indicating that the fdxN

product is essential for nitrogen fixation in H. seropedicae. The 
Nif negative phenotype of the fdxN mutant was partially 
complemented by a plasmid carrying only the fdxN gene under 
control of the lacZ promoter (strain SmR7.2/pALIC1). Since 
the mutation in fdxN is polar on hesB, either hesB is not 
essential for nitrogen fixation in H. seropedicae or its product 
is being substituted by another protein in the mutant strain. In 
agreement with the latter suggestion, a similarity search 
revealed two additional hesB-like genes in the H. seropedicae

genome (unpublished data). Searches of the whole genome 
sequences database using the String software (von Mering et

al., 2007) showed that hesB-like genes are usually located in 
the neighborhood of nifS-like genes in an organization similar 
to that observed in the H. seropedicae genome (data not 
shown), suggesting that hesB participates, together with 
NifUS-like proteins, in Fe-S cluster biosynthesis (Dombrecht 
et al., 2002).  

Mutation of a ferredoxin gene (fdxN) of Azoarcus sp. which 
is co-transcribed with the nifHDK genes did not abolish its 
nitrogenase activity (Egener et al., 2001), but yielded a 
phenotype similar to that of fdxA mutant of H. seropedicae.
However, the Azoarcus mutant strain was impaired in the 
ammonium-dependent switch-off of nitrogenase (Egener et al., 
2001). Although FdxA and FdxN are not homologous proteins, 
we decided to assay the H. seropedicae fdxA mutant for 
nitrogenase switch-off by ammonium ions since fdxA is the 
only ferredoxin gene located in the nifHDK operon. Contrary 
to Azoarcus, no effect on nitrogenase switch-off was observed 
(Fig. 4): both mutant and wild-type strains exhibited rapid and 
reversible inhibition of the nitrogenase activity upon addition 
of ammonium to cells actively fixing nitrogen. Thus, our results 
indicate that FdxA is not involved in the ammonium- 
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Fig. 4. NH4
+-dependent nitrogenase switch-off activity of H. seropedicae

wild type (SmR1) and fdxA mutant (KC6) strains. Arrow indicates the 

addition of 300 mol/L NH4Cl. Full nitrogenase activity (100%) was 

approximately 8 mol of ethylene/min/mg of protein for the wild type 

strain SmR1 and 70% lower for the fdxA strain KC6. Results are the 

Mean SD deviation of at least three experiments. 

dependent nitrogenase switch-off in H. seropedicae. A major 
difference between nitrogenase activity control in Azoarcus sp. 
and H. seropedicae is that in the former the nitrogenase 
switch-off involves reversible ADP-ribosylation by the DraT 
and DraG enzymes (Martin and Reinhold-Hurek, 2002). In H.

seropedicae the nitrogenase switch off/on occurs through an as 
yet unknown mechanism of post-translational regulation 
which involves the ammonia channel AmtB (Noindorf et al., 
2006). The wild type switch-off phenotype of the fdxA mutant 
of H. seropedicae may be explained by the distinct mechanisms 
for nitrogenase post-translational control. Alternatively, fdxN

from Azoarcus and fdxA from H. seropedicae may not be 
functionally equivalent despite similar locations in relation to 
the nifHDK genes and the nitrogenase activity phenotype. The 
latter hypothesis is probably favored since FdxN and FdxA 
share no significant similarity. 

Many studies on the role of ferredoxin-like proteins in 
nitrogen fixation have been reported in diazotrophs such as 
Azoarcus sp., B. japonicum, R. rubrum, K. pneumoniae, R. 

capsulatus (Shah et al., 1983; Ebeling et al., 1988; Jouanneau et

al., 1995; Armengaud et al., 1997; Egener et al., 2001; Edgren 
and Nordlund, 2005; Hauser et al., 2007). In the photosynthetic 
bacterium R. rubrum, the ferredoxin coded by fdxN2, found 
downstream from nifB, is believed to be the primary electron 
donor to nitrogenase (Edgren and Nordlund, 2005) with the 
involvement of the fixABCX gene products (Edgren and 
Nordlund, 2006). Two different pathways for electron transfer 
to nitrogenase have been proposed for this organism: one is 
dependent on a NifJ-like protein and the other on fixABCX

gene products. However, both pathways seem to use the FdxN 
protein as a direct electron donor to the Fe-protein (Edgren 
and Nordlund, 2006). 

In B. japonicum, three ferredoxin coding genes are located 
in the nif or nod clusters (Gottfert et al., 2001): the frxA gene, 
located downstream from nifB is not essential for nitrogen 
fixation (Ebeling et al., 1988); the fixX gene, located downstream 
from fixBC is required for nitrogen fixation (Gubler et al., 
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1989); and the fdxN gene, located downstream from aldA gene, 
is essential for efficient symbiotic nitrogen fixation and 
necessary for full nitrogenase activity (Hauser et al., 2007). 

A recurrent characteristic of the location of fdxA and fdxN 

in many diazotrophs is the presence in their neighborhood, 
usually in the same operon, of nif genes involved in the iron-
molybdenum cofactor biosynthesis, namely nifEN and nifB,
suggesting their possible participation in FeMoco biosynthesis. 
This hypothesis is also consistent with the elimination or 
reduction of nitrogenase activity in the respective mutants. 

In H. seropedicae, the fdxA gene product is important for 
full nitrogenase activity, but it seems unlikely that FdxA is the 
primary electron donor to nitrogenase or its activity can be 
substitute by another protein. On the other hand, the absence 
of nitrogenase activity in the fdxN mutant indicates that FdxN 
is essential for nitrogenase activity and our results also imply 
that FdxA cannot replace FdxN in its role in nitrogen fixation 
in H. seropedicae. Whether FdxN is the primary electron 
donor to nitrogenase in H. seropedicae or whether it is 
necessary for nitrogenase metal cluster assembly, a hypothesis 
suggested by the conservation of adjacent genes, has yet to be 
determined. 
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